

STSCI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

Hubble Space Telescope Status

Cycle 32 TAC Presentation John W. MacKenty 10 & 11 April 2024

Thank you for serving on the Cycle 32 HST TAC

- The Hubble Space Telescope has been operating for nearly 34 years!!!
 - We are almost 15 years past Servicing Mission 4
 - At that time, planning was for 5 years of science operations
 - In most respects, Hubble continues to work as it has since SM4 in 2009
 - There is some slight instrument performance degradation (mainly in CCD charge transfer efficiency)
 - + This results in very minimal change over the past 5+ years and very slow future impacts are expected
 - Some degradation in the pointing control system results in more failed acquisitions than the long term average (2% has increased to about 5% and sometimes more for short periods – more later)
 - We all (GOs and STScI+GSFC) have become smarter in how we use the observatory and to get the best science from its observations
- You, by serving the HST TAC process, have the privilege and responsibility of defining what Hubble does next!

۲

٠

Supporting Time Domain Science

Hubble increasingly operates in an era of all-sky + multi-messenger surveys

- Increasing excitement & pressure from discoveries of transient phenomena
 - o All-sky O/IR surveys (e.g., Rubin, Roman, Zwicky Transit Facility)
 - o Gravitational wave experiments (e.g., LIGO, Kamioka, Virgo, LISA)
 - o Neutrino observatories (e.g., IceCube Gen2, Super Kamiokande, Hyper Kamiokande)
- Scheduling tension between exciting science programs
 - Exoplanet & Solar System programs require tight timing constraints, as do observations coordinated with other facilities
 - o Transient phenomena often require rapid response
 - Proposers are required to justify all special requirements & constraints
- We are exploring ways to maximize scientific return while accommodating competing pressures
 - Hubble can provide crucial context on various timescales (days to years)
 - UV evolution distinct & provides physical insights unavailable at longer wavelengths
 - Starting Cycle 31 "Flexible Thursdays" allowed rapid Target of Opportunity response with minimal disruption of other science

Flexible Thursdays – A new scheduling opportunity initiated last year

- In <u>addition</u> to the long-standing Target of Opportunity (ToO) categories, a new ToO category became available starting in Cycle 31 → FLEXIBLE THURSDAYS
- One Thursday per month, the Hubble schedule will include a Flexible Thursday (beginning at approximately 12:00 UT) with targets that can be rescheduled relatively easily (*i.e.* Thursday's original schedule can be disrupted with only minor impacts)
- Triggers for a ToO must be received with fully detailed activation and Phase II submission by 10:00 UT on Tuesday (nearly as fast as a rare "ultra-disruptive" ToO)
- This significantly increases the potential number of fast turn-around observations with HST for Cycle 32 from 8 disruptive ToO's (2-5 days) by adding 24 possible ToO (2-3 days) over 12 Thursdays during the Cycle
- There are a number of hard constraints on the use of the ToO necessary to limit both its impact of the scheduling of HST and the workload of the scheduling teams

Spacecraft Status

- High confidence in operations into the 2030s
- Current engineering efforts by STScI and GSFC are extending time in 3-gyro mode
 - 3 (of 6) Gyros remain functional although one (G3) has higher noise and drift rate
 - Results in more frequent acquisition failures; operational and software mitigation efforts have improved this and recent improvements will reduce recovery time
 - 1-Gyro mode is available and tested
 - TAC should assume 3-gyro mode for Cycle 32
- FGS2 experiences periods of servo saturation events, causing lost observations
- Work ongoing to restore redundancy in SI C&DH system (CDR April 24-25, 2024)
- HST orbit stable well beyond 2030
- Power, thermal, communications, etc. retain significant redundancy → 2030+ *possible*!

- HST supports four science instruments (plus the FGS may be used for astrometry)
 - ACS = Advanced Camera for Surveys (installed 2002; SM3b)
 - COS = Cosmic Origins Spectrograph (installed 2009; SM4)
 - STIS = Space Telescope Imaging Spectrograph (installed 1997; SM2)
 - WFC3 = Wide Field Camera 3 (installed 2009; SM4)
- For TAC purposes, the <u>performance of these instruments has been basically stable</u> <u>since 2009</u>
- More information:
 - <u>https://www.stsci.edu/files/live/sites/www/files/home/hst/_documents/HST-Booklet.pdf</u>
 - <u>https://hst-docs.stsci.edu/hsp/hubble-space-telescope-science-policies-group-and-peer-review-information/general-info-getting-started/hubble-and-its-instruments</u>
 - <u>https://www.stsci.edu/hst/instrumentation</u>

Science Instruments Status

- Engineering estimates give high confidence for long term operation <u>well beyond</u> 2025
 - >95% COS and WFC3, >85% for ACS and STIS
- Re-designed management of COS FUV detector extends useful life to ~2030 or longer
- Graceful aging of CCD detectors
 - Charge transfer efficiency degradation mitigated by flashing and corrected at the pixel level with algorithms of increasing sophistication
 - Vast majority of defective pixels (warm, hot, dead) mitigated through extensive monitoring, reference files, and appropriate algorithms
- Recent increase in ACS/SBC MAMA detector dark rate
 - Appears to have corrected itself; being monitored and some mitigation possible if needed in future
 - Assume nominal performance at this time
- Changes in flat fields and sensitivities monitored and addressed in calibration pipelines
- Drifts in focus and alignment corrected by both mechanism motions and calibration updates

Please Leave the Scheduling and Technical Issues to Us

In reviewing Cycle 32 proposals, Panels and TAC should focus on the best science

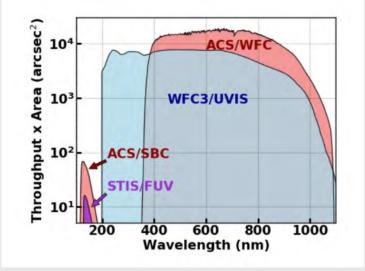
- Constraints/Special Requirements must be <u>scientifically</u> justified
- However, leave scheduling constraints to us to consider in the context of the entire Cycle 32 pool of recommended proposals
- Also, do not concern yourselves with the suitability of observing programs if we do not remain in the nominal 3-gyro configuration
 - That is, *assume current state of Hubble performance*!

• Thank you again for participating in this important process.

Backup Material

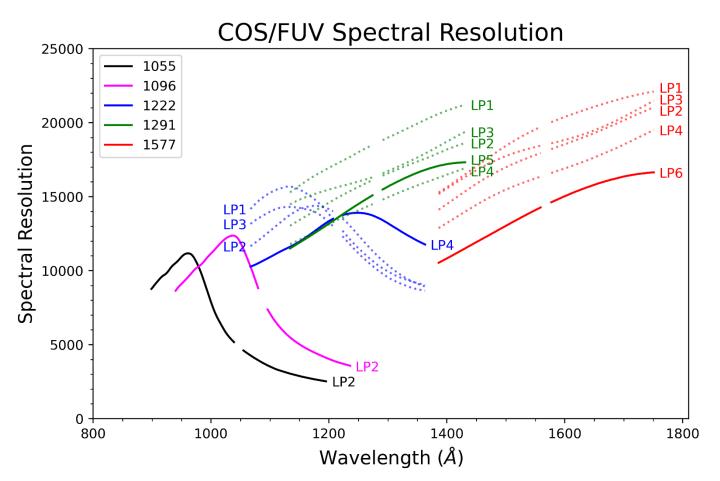
Advanced Camera for Surveys (ACS)

- ACS/WFC has the largest field of view and highest throughput in visible light of any HST instrument
- The ACS/WFC grism provides well-calibrated, wide-field slitless spectroscopy of visible to near-IR light
- ACS is the only active spacebased, high spatial resolution polarimeter, providing synergy with JWST dust studies
- The ACS/SBC is especially optimized for FUV imaging, but also supports slitless spectroscopy
- Starting in Cy31 red light spectropolarimetry with 0°/60°/120° polarizers × G800L grism

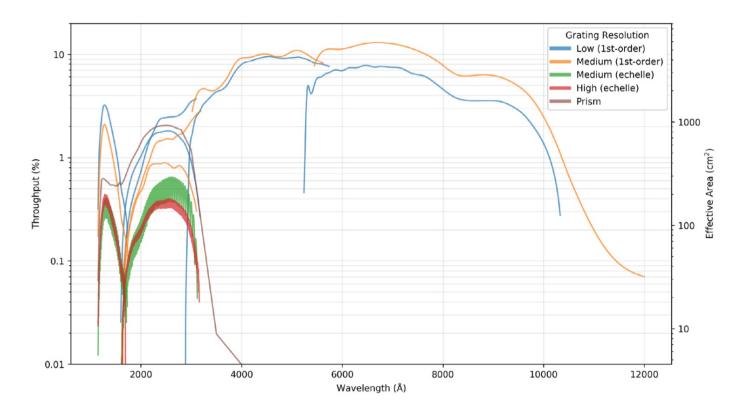

Wide Field Channel (WFC)

- Optical imaging and slitless spectroscopy (3,500–11,000 Å)
- Highest throughput on HST in visible light
- 202" x 202" field of view, largest on HST
- 13 wide, medium, and narrowband filters
- 15 tunable wavelength filters
- Grism (5,500–10,500 Å); R ~ 100 at 8,000 Å
- Near-UV / visible linear polarization filters

Please see the ACS Instrument Handbook for more detailed information on ACS capabilities. https://hst-docs.stsci.edu/display/ACSIHB/

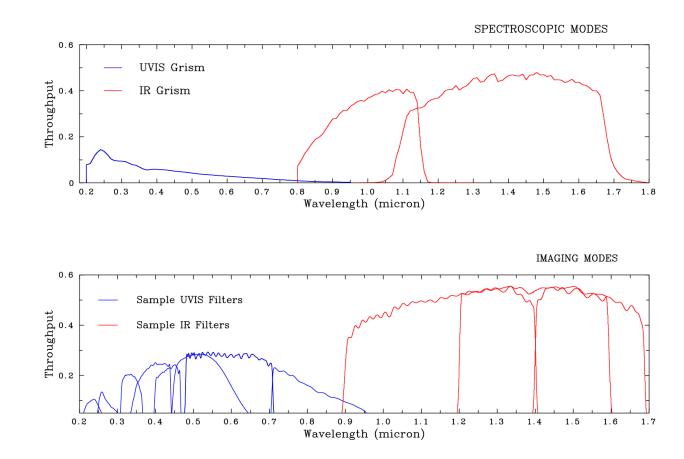

Solar Blind Channel (SBC)

- FUV imaging and slitless spectroscopy (1,150-1,700 Å)
- High throughput, best for FUV imaging
- 35" x 31" field of view
- 5 longpass filters, 1 Lyman α filter
- Two prisms; R ~ 79 and 96 at 1,500 Å


Cosmic Origins Spectrograph (COS)

- COS provides low to medium resolution spectroscopy from 800 to 3200 A.
- Has a fixed 2.5 arc second diameter aperture
- High sensitivity for observing faint sources
- Spectroscopy down to 800 A with the blue modes

Space Telescope Imaging Spectrograph (STIS)


- STIS UV and visible imaging and low to high resolution spectroscopy with a variety of apertures.
- Has a coronagraphic mask and occulting bars
- Time-tag mode in the UV allows time-resolved observations
- Spatial scanning with the CCD allows high SNRs to be obtained while avoiding saturation
- High spatial resolution in the UV and visible

V

Wide Field Camera 3 (WFC3)

- Two channels: UVIS operating between 2000 to 10000 A, and IR operating between 0.9 to 1.7 microns.
- High resolution imaging from 2000 A to 1.7 micron with a wide complement of filters
- Grism spectroscopy providing low resolution spectra at high spatial resolution in the UV/visible and IR
- Spatial scanning by slewing during an exposure to achieve high SNR photometry while avoiding saturation with direct imaging
- Grism scanning by slewing during an exposure to provide extremely high SNR spectra

Please Share Your Science with the Public

- STScI provides support for sharing your findings with the public. Please visit
 - <u>http://www.stsci.edu/news/scientist-resources</u>
 - Simplified email based system will initiate a process with the news team