3.2 Size of a Resolution Element
Throughout this document, we assume that a resolution element (resel) spans 6 × 10 pixels on the FUV detector (in the dispersion and cross-dispersion directions, respectively) and 3 × 3 pixels on the NUV detector (Table 1.2). These values were determined before launch. Even then, it was known that the true size of a resel would vary with wavelength. In-flight data suggests that the FUV resel is somewhat larger than previously assumed (see the discussion of the line-spread function in Section 3.3), while the NUV resel is smaller. For the G130M 1055 Å and 1096 Å settings the resel is between 8 and 32 pixels. For the 1222 Å setting it is 7–13 pixels. We will continue to refine our analysis of the instrument parameters. In the mean time, keep in mind that, for the FUV, the COS Exposure Time Calculator (ETC) uses a 6-pixel resel size (dispersion) in most of its calculations in the FUV. It uses resel sizes of 8, 9, and 6 for the G130M/1055 and G130M/1096 blue modes, and G130M/1222 respectively. Users who adopt a larger or smaller resel should adjust the ETC results accordingly.
-
COS Instrument Handbook
- Acknowledgments
- Chapter 1: An Introduction to COS
-
Chapter 2: Special Considerations for Cycle 29
- • 2.1 COS FUV Detector Lifetime Positions
- • 2.2 Visit Length
- • 2.3 Central Wavelength Settings Added in Cycle 26
- • 2.4 The G285M Grating is Available but Unsupported
- • 2.5 COS Observations Below 1150 Angstroms: Resolution and Wavelength Calibration Issues
- • 2.6 Time-Dependent Sensitivity Changes
- • 2.7 Spectroscopic Use of the Bright Object Aperture
- • 2.8 Non-Optimal Observing Scenarios
- • 2.9 NUV Spectroscopic Acquisitions
- • 2.10 SNAP, TOO, and Unpredictable Source Programs with COS
- • 2.11 Choosing between COS and STIS
- Chapter 3: Description and Performance of the COS Optics
- Chapter 4: Description and Performance of the COS Detectors
-
Chapter 5: Spectroscopy with COS
- • 5.1 The Capabilities of COS
- • 5.2 TIME-TAG vs. ACCUM Mode
- • 5.3 Valid Exposure Times
- • 5.4 Estimating the BUFFER-TIME in TIME-TAG Mode
- • 5.5 Spanning the Gap with Multiple CENWAVE Settings
- • 5.6 FUV Single-Segment Observations
- • 5.7 Internal Wavelength Calibration Exposures
- • 5.8 Fixed-Pattern Noise
- • 5.9 COS Spectroscopy of Extended Sources
- • 5.10 Wavelength Settings and Ranges
- Chapter 6: Imaging with COS
- Chapter 7: Exposure-Time Calculator - ETC
-
Chapter 8: Target Acquisitions
- • 8.1 Introduction
- • 8.2 Target Acquisition Overview
- • 8.3 ACQ SEARCH Acquisition Mode
- • 8.4 ACQ IMAGE Acquisition Mode
- • 8.5 ACQ PEAKXD Acquisition Mode
- • 8.6 ACQ PEAKD Acquisition Mode
- • 8.7 Exposure Times
- • 8.8 Centering Accuracy and Data Quality
- • 8.9 Recommended Parameters for all COS TA Modes
- • 8.10 Special Cases
- Chapter 9: Scheduling Observations
- Chapter 10: Bright-Object Protection
- Chapter 11: Data Products and Data Reduction
-
Chapter 12: The COS Calibration Program
- • 12.1 Introduction
- • 12.2 Ground Testing and Calibration
- • 12.3 SMOV4 Testing and Calibration
- • 12.4 COS Monitoring Programs
- • 12.5 Cycle 17 Calibration Program
- • 12.6 Cycle 18 Calibration Program
- • 12.7 Cycle 19 Calibration Program
- • 12.8 Cycle 20 Calibration Program
- • 12.9 Cycle 21 Calibration Program
- • 12.10 Cycle 22 Calibration Program
- • 12.11 Cycle 23 Calibration Program
- • 12.12 Cycle 24 Calibration Program
- • 12.13 Cycle 25 Calibration Program
- • 12.14 Cycle 26 Calibration Program
- • 12.15 Cycle 27 Calibration Program
- • 12.16 Cycle 28 Calibration Program
- Chapter 13: Spectroscopic Reference Material
- • Glossary