7.5 Extinction Correction
Extinction can dramatically reduce the observed intensity of your source, particularly in the ultraviolet. Figure 7.3 shows Aλ/AV values applicable to our Galaxy, taken from Cardelli, Clayton, & Mathis (1989, ApJ, 345, 245) assuming RV = 3.1. This corresponds to the Milky Way Diffuse (Rv = 3.1) selection of the ETC.
Extinction curves have a strong metallicity dependence, particularly at ultraviolet wavelengths. Sample extinction curves are presented in Gordon et al. [2003, ApJ, 594, 279 (LMC Average, LMC 30 Dor Shell, and SMC Bar)], Calzetti et al. [2000, ApJ, 533, 682 (starburst galaxies)], and references therein. At lower metallicities, the 2200 Å bump that is so prominent in the Galactic extinction curve disappears, and Aλ/E(B – V) increases at shorter UV wavelengths.
The ETC allows the user to select among a variety of extinction curves and to apply the extinction correction either before or after the input spectrum is normalized. Be aware that not all extinction laws in the ETC extend below 1200 Å, which may cause incorrect calculations for the 1222, 1055, and 1096 Å central wavelengths.
-
COS Instrument Handbook
- Acknowledgments
- Chapter 1: An Introduction to COS
-
Chapter 2: Special Considerations when Observing with COS
- • 2.1 COS FUV Detector Lifetime Positions
- • 2.2 Visit Length
- • 2.3 Central Wavelength Settings Added in Cycle 26
- • 2.4 ORIENT constraints for Extended Sources
- • 2.5 COS Observations Below 1150 Angstroms: Resolution and Wavelength Calibration Issues
- • 2.6 Time-Dependent Sensitivity Changes
- • 2.7 Spectroscopic Use of the Bright Object Aperture
- • 2.8 Non-Optimal Observing Scenarios
- • 2.9 NUV Spectroscopic Acquisitions
- • 2.10 SNAP, TOO, and Unpredictable Source Programs with COS
- • 2.11 Choosing between COS and STIS
- Chapter 3: Description and Performance of the COS Optics
- Chapter 4: Description and Performance of the COS Detectors
-
Chapter 5: Spectroscopy with COS
- • 5.1 The Capabilities of COS
- • 5.2 TIME-TAG vs. ACCUM Mode
- • 5.3 Valid Exposure Times
- • 5.4 Estimating the BUFFER-TIME in TIME-TAG Mode
- • 5.5 Spanning the Gap with Multiple CENWAVE Settings
- • 5.6 FUV Single-Segment Observations
- • 5.7 Internal Wavelength Calibration Exposures
- • 5.8 Fixed-Pattern Noise
- • 5.9 COS Spectroscopy of Extended Sources
- • 5.10 Wavelength Settings and Ranges
- • 5.11 Spectroscopy with Available but Unsupported Settings
- Chapter 6: Imaging with COS
- Chapter 7: Exposure-Time Calculator - ETC
-
Chapter 8: Target Acquisitions
- • 8.1 Introduction
- • 8.2 Target Acquisition Overview
- • 8.3 ACQ SEARCH Acquisition Mode
- • 8.4 ACQ IMAGE Acquisition Mode
- • 8.5 ACQ PEAKXD Acquisition Mode
- • 8.6 ACQ PEAKD Acquisition Mode
- • 8.7 Exposure Times
- • 8.8 Centering Accuracy and Data Quality
- • 8.9 Recommended Parameters for all COS TA Modes
- • 8.10 Special Cases
- Chapter 9: Scheduling Observations
- Chapter 10: Bright-Object Protection
- Chapter 11: Data Products and Data Reduction
-
Chapter 12: The COS Calibration Program
- • 12.1 Introduction
- • 12.2 Ground Testing and Calibration
- • 12.3 SMOV4 Testing and Calibration
- • 12.4 COS Monitoring Programs
- • 12.5 Cycle 17 Calibration Program
- • 12.6 Cycle 18 Calibration Program
- • 12.7 Cycle 19 Calibration Program
- • 12.8 Cycle 20 Calibration Program
- • 12.9 Cycle 21 Calibration Program
- • 12.10 Cycle 22 Calibration Program
- • 12.11 Cycle 23 Calibration Program
- • 12.12 Cycle 24 Calibration Program
- • 12.13 Cycle 25 Calibration Program
- • 12.14 Cycle 26 Calibration Program
- • 12.15 Cycle 27 Calibration Program
- • 12.16 Cycle 28 Calibration Program
- • 12.17 Cycle 29 Calibration Program
- Chapter 13: Spectroscopic Reference Material
- • Glossary