7.4 Patterns and Dithering
A number of dither patterns are available for ACS that automatically shift the target pointing between exposures. The size of the shifts depends on the purpose of dithering between exposures. It is useful to distinguish between mosaicing and dithering. Mosaicing is done with the aim of increasing the area covered by a particular set of exposures, while providing a seamless joining of contiguous frames. Dithering is done for a variety of reasons, such as:
- Better removal of detector blemishes
- Straightforward removal of hot pixels
- Improving the PSF sampling
- Improving the photometric accuracy by averaging over flat fielding errors
- Obtaining a contiguous field of view for the WFC (filling in the interchip gap)
Patterns have been defined that easily implement mosaicing and dithering. These patterns allow exposures to be automatically associated in CALACS pipeline processing with the following restrictions: only exposures obtained within a single visit and exposures whose cumulative offset is under the ~100 arcsecond guide star limitation can be associated. The latter condition includes the dither patterns for all three cameras, the SBC mosaic patterns, the 2-point ACS-WFC-MOSAIC-LINE
pattern, and all patterns designed with POS TARGs. These are described in detail on the ACS Dither webpage. More general information about pointings and patterns can be found in Chapter 7 of the HST Phase II Proposal Instructions, and more general information about ACS dither patterns is included in Section 7.2 of the HST Phase II Proposal Instructions.
The plate scale for the WFC varies across the FOV by about ±5% due to distortion, so a one pixel dither near the center will be 0.95 or 1.05 pixels near the corners. For this reason, dither patterns should strike a balance between being large enough to reject detector artifacts, and being as compact as possible to maintain the integrity of the pattern over the entire field of view. Large displacements will have varying sub-pixel properties across the image. For observations involving other instruments used in parallel (WFC3 in particular), we recommend users carefully read ACS ISR 2023-04.
In addition to the plate-scale variation associated with the significant ACS geometric distortion, there can also be a temporal variation of the overall image alignment. Some CR-SPLIT images taken during SMOV (SM3B) testing, in which the two components were separated by the scheduling system across orbital occultations (about a one hour gap), showed registration differences of about 0.5 pixel corner-to-corner. Thus, to combine multiple images to create oversampled images at the resolution ACS is capable of providing, the user may need to allow for the general problem of combining distorted, misregistered images. A number of tools are available to help users align and combine dithered data. For information on how best to reduce dithered ACS data we recommend users check the DrizzlePac website.
-
ACS Instrument Handbook
- • Acknowledgments
- • Change Log
- • Chapter 1: Introduction
- Chapter 2: Considerations and Changes After SM4
- Chapter 3: ACS Capabilities, Design and Operations
- Chapter 4: Detector Performance
- Chapter 5: Imaging
- Chapter 6: Polarimetry, Coronagraphy, Prism and Grism Spectroscopy
-
Chapter 7: Observing Techniques
- • 7.1 Designing an ACS Observing Proposal
- • 7.2 SBC Bright Object Protection
- • 7.3 Operating Modes
- • 7.4 Patterns and Dithering
- • 7.5 A Road Map for Optimizing Observations
- • 7.6 CCD Gain Selection
- • 7.7 ACS Apertures
- • 7.8 Specifying Orientation on the Sky
- • 7.9 Parallel Observations
- • 7.10 Pointing Stability for Moving Targets
- Chapter 8: Overheads and Orbit-Time Determination
- Chapter 9: Exposure-Time Calculations
-
Chapter 10: Imaging Reference Material
- • 10.1 Introduction
- • 10.2 Using the Information in this Chapter
-
10.3 Throughputs and Correction Tables
- • WFC F435W
- • WFC F475W
- • WFC F502N
- • WFC F550M
- • WFC F555W
- • WFC F606W
- • WFC F625W
- • WFC F658N
- • WFC F660N
- • WFC F775W
- • WFC F814W
- • WFC F850LP
- • WFC G800L
- • WFC CLEAR
- • HRC F220W
- • HRC F250W
- • HRC F330W
- • HRC F344N
- • HRC F435W
- • HRC F475W
- • HRC F502N
- • HRC F550M
- • HRC F555W
- • HRC F606W
- • HRC F625W
- • HRC F658N
- • HRC F660N
- • HRC F775W
- • HRC F814W
- • HRC F850LP
- • HRC F892N
- • HRC G800L
- • HRC PR200L
- • HRC CLEAR
- • SBC F115LP
- • SBC F122M
- • SBC F125LP
- • SBC F140LP
- • SBC F150LP
- • SBC F165LP
- • SBC PR110L
- • SBC PR130L
- • 10.4 Geometric Distortion in ACS
- • Glossary