12.4 Observing Too-Bright Objects with STIS
As described in Section 7.7, the STIS MAMA detectors are subject to damage at high local and global count rates. The MAMA detectors also suffer uncorrectable non-linearity at similar count rates (see Section 7.5.4). There are therefore configuration-specific count rate limits for all observations that use the MAMA detectors; sources brighter than allowed by the limits cannot be observed in that configuration.
The STIS CCDs are not subject to the same bright object constraints, as the CCD cannot be damaged by observations of bright sources. At high accumulated count/pix levels, however, the CCD saturates and charge bleeds along the columns. When CCDGAIN=4
, the saturated counts can be recovered by summing over the pixels bled into, and this spatially integrated count rate remains linear with exposure level (see STIS ISR 1999-05). This is not true for CCDGAIN=1
. The charge bleeding resulting from saturation does somewhat complicate flat fielding and removal of cosmic rays, however, as it changes the locations of some of the observed counts. As described previously (see Section 7.3.2), CCD saturation can be avoided by keeping exposure times short when observing bright targets. Spatial scanning with the CCD (Section 12.12) may also be employed. The minimum exposure time for CCD observations (0.1 second) dictates the maximum source brightness which can be observed without saturating.
The only way to use STIS to observe a source that is too bright is to use a configuration or observing mode which reduces the flux from the target (globally and/or locally), bringing it into the observable regime. The options available to achieve this reduction are:
- Use a smaller slit to reduce the transmitted light for spectroscopic observations (see Section 13.4 where the percent flux transmitted through each slit as a function of wavelength is reported).
- Select a more appropriate grating or filter configuration. The solution may be a configuration with higher resolving power if it is the local limit which is being violated, or a configuration that covers a smaller spectral range if the global limit is being violated. In more extreme cases, a grating (filter) that covers an entirely different region of the spectrum must be chosen. Note that when observing in first order in the NUV, the use of CCD NUV first-order spectroscopic modes
G230LB
andG230MB
can be considered (see Section 4.1.6). - Use a neutral-density-filtered full aperture. The neutral-density filters are described in Section 5.4; they produce attenuations ranging by factors from 10–1 to 10–6. Note, however, that the ND filters are located in the slit wheel. Thus, all supported ND full-filtered exposures will be slitless; this means that a slit and an ND full filter cannot be used together. Similarly, a ND full filter and another filter in imaging mode cannot be used together. Also, NDQ1, NDQ2, NDQ3, and NDQ4 filters are four distinct quadrants of a single filter, all of which are simultaneously imaged. NDQ4 is of little use, as any target that requires this filter is too close to the NDQ1 quadrant to pass bright-object screening.
- Use one of the echelle or long calibration slits which contain neutral-density filters. Supported neutral-density slits for the echelles are
0.2X0.05ND
(with ND=2.0) and0.3X0.05ND
(with ND=3.0), where if ND=x, the flux is attenuated by approximately 10–x. Supported neutral-density long-slits that can be used for first order or echelle observations are31X0.05NDA
(withND=0.4
),31X0.05NDB
(with ND=0.8), and31X0.05NDC
(with ND=1.2). The use of these long slits with an echelle grating will cause order overlap problems (see Section 12.2), but for point sources the order separation may be adequate for many science programs. The use of the neutral-density long-slits with the PRISM remains "available-but-unsupported" at this time. - Use spatial scanning (CCD only) to spread the exposure over a larger spatial extent (see Section 12.12).
-
STIS Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction
-
Chapter 2: Special Considerations for Cycle 33
- • 2.1 Impacts of Reduced Gyro Mode on Planning Observations
- • 2.2 STIS Performance Changes Pre- and Post-SM4
- • 2.3 New Capabilities for Cycle 33
- • 2.4 Use of Available-but-Unsupported Capabilities
- • 2.5 Choosing Between COS and STIS
- • 2.6 Scheduling Efficiency and Visit Orbit Limits
- • 2.7 MAMA Scheduling Policies
- • 2.8 Prime and Parallel Observing: MAMA Bright-Object Constraints
- • 2.9 STIS Snapshot Program Policies
- Chapter 3: STIS Capabilities, Design, Operations, and Observations
- Chapter 4: Spectroscopy
- Chapter 5: Imaging
- Chapter 6: Exposure Time Calculations
- Chapter 7: Feasibility and Detector Performance
-
Chapter 8: Target Acquisition
- • 8.1 Introduction
- • 8.2 STIS Onboard CCD Target Acquisitions - ACQ
- • 8.3 Onboard Target Acquisition Peakups - ACQ PEAK
- • 8.4 Determining Coordinates in the International Celestial Reference System (ICRS) Reference Frame
- • 8.5 Acquisition Examples
- • 8.6 STIS Post-Observation Target Acquisition Analysis
- Chapter 9: Overheads and Orbit-Time Determination
- Chapter 10: Summary and Checklist
- Chapter 11: Data Taking
-
Chapter 12: Special Uses of STIS
- • 12.1 Slitless First-Order Spectroscopy
- • 12.2 Long-Slit Echelle Spectroscopy
- • 12.3 Time-Resolved Observations
- • 12.4 Observing Too-Bright Objects with STIS
- • 12.5 High Signal-to-Noise Ratio Observations
- • 12.6 Improving the Sampling of the Line Spread Function
- • 12.7 Considerations for Observing Planetary Targets
- • 12.8 Special Considerations for Extended Targets
- • 12.9 Parallel Observing with STIS
- • 12.10 Coronagraphic Spectroscopy
- • 12.11 Coronagraphic Imaging - 50CORON
- • 12.12 Spatial Scans with the STIS CCD
-
Chapter 13: Spectroscopic Reference Material
- • 13.1 Introduction
- • 13.2 Using the Information in this Chapter
-
13.3 Gratings
- • First-Order Grating G750L
- • First-Order Grating G750M
- • First-Order Grating G430L
- • First-Order Grating G430M
- • First-Order Grating G230LB
- • Comparison of G230LB and G230L
- • First-Order Grating G230MB
- • Comparison of G230MB and G230M
- • First-Order Grating G230L
- • First-Order Grating G230M
- • First-Order Grating G140L
- • First-Order Grating G140M
- • Echelle Grating E230M
- • Echelle Grating E230H
- • Echelle Grating E140M
- • Echelle Grating E140H
- • PRISM
- • PRISM Wavelength Relationship
-
13.4 Apertures
- • 52X0.05 Aperture
- • 52X0.05E1 and 52X0.05D1 Pseudo-Apertures
- • 52X0.1 Aperture
- • 52X0.1E1 and 52X0.1D1 Pseudo-Apertures
- • 52X0.2 Aperture
- • 52X0.2E1, 52X0.2E2, and 52X0.2D1 Pseudo-Apertures
- • 52X0.5 Aperture
- • 52X0.5E1, 52X0.5E2, and 52X0.5D1 Pseudo-Apertures
- • 52X2 Aperture
- • 52X2E1, 52X2E2, and 52X2D1 Pseudo-Apertures
- • 52X0.2F1 Aperture
- • 0.2X0.06 Aperture
- • 0.2X0.2 Aperture
- • 0.2X0.09 Aperture
- • 6X0.2 Aperture
- • 0.1X0.03 Aperture
- • FP-SPLIT Slits 0.2X0.06FP(A-E) Apertures
- • FP-SPLIT Slits 0.2X0.2FP(A-E) Apertures
- • 31X0.05ND(A-C) Apertures
- • 0.2X0.05ND Aperture
- • 0.3X0.05ND Aperture
- • F25NDQ Aperture
- 13.5 Spatial Profiles
- 13.6 Line Spread Functions
- • 13.7 Spectral Purity, Order Confusion, and Peculiarities
- • 13.8 MAMA Spectroscopic Bright Object Limits
-
Chapter 14: Imaging Reference Material
- • 14.1 Introduction
- • 14.2 Using the Information in this Chapter
- 14.3 CCD
- 14.4 NUV-MAMA
-
14.5 FUV-MAMA
- • 25MAMA - FUV-MAMA, Clear
- • 25MAMAD1 - FUV-MAMA Pseudo-Aperture
- • F25ND3 - FUV-MAMA
- • F25ND5 - FUV-MAMA
- • F25NDQ - FUV-MAMA
- • F25QTZ - FUV-MAMA, Longpass
- • F25QTZD1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25SRF2 - FUV-MAMA, Longpass
- • F25SRF2D1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25LYA - FUV-MAMA, Lyman-alpha
- • 14.6 Image Mode Geometric Distortion
- • 14.7 Spatial Dependence of the STIS PSF
- • 14.8 MAMA Imaging Bright Object Limits
- Chapter 15: Overview of Pipeline Calibration
- Chapter 16: Accuracies
-
Chapter 17: Calibration Status and Plans
- • 17.1 Introduction
- • 17.2 Ground Testing and Calibration
- • 17.3 STIS Installation and Verification (SMOV2)
- • 17.4 Cycle 7 Calibration
- • 17.5 Cycle 8 Calibration
- • 17.6 Cycle 9 Calibration
- • 17.7 Cycle 10 Calibration
- • 17.8 Cycle 11 Calibration
- • 17.9 Cycle 12 Calibration
- • 17.10 SM4 and SMOV4 Calibration
- • 17.11 Cycle 17 Calibration Plan
- • 17.12 Cycle 18 Calibration Plan
- • 17.13 Cycle 19 Calibration Plan
- • 17.14 Cycle 20 Calibration Plan
- • 17.15 Cycle 21 Calibration Plan
- • 17.16 Cycle 22 Calibration Plan
- • 17.17 Cycle 23 Calibration Plan
- • 17.18 Cycle 24 Calibration Plan
- • 17.19 Cycle 25 Calibration Plan
- • 17.20 Cycle 26 Calibration Plan
- • 17.21 Cycle 27 Calibration Plan
- • 17.22 Cycle 28 Calibration Plan
- • 17.23 Cycle 29 Calibration Plan
- • 17.24 Cycle 30 Calibration Plan
- • 17.25 Cycle 31 Calibration Plan
- • 17.26 Cycle 32 Calibration Plan
- Appendix A: Available-But-Unsupported Spectroscopic Capabilities
- • Glossary