17.4 Cycle 7 Calibration
The STIS Cycle 7 calibration plan included additional characterization of STIS performance, along with periodic monitoring of sensitivity, flat fields, dark current, gain, etc. Because it is not feasible to calibrate the instrument in all possible observing modes, the calibration emphasizes measurements in all the supported modes. The results of all Cycle 7 calibration programs are presented in the close-out report STIS ISR 2000-04.
17.4.1 Calibration Priorities
The task of calibrating STIS involves a number of important trade-offs. HST calibration observations are planned to use a limited number of orbits (no more than about 10% of the total science time allocated in the Cycle), and to stretch out through each Cycle so that the observing schedule is not too heavily front-loaded with calibrations. The allocation of spacecraft and staff resources to the calibration effort for STIS has followed roughly the following set of priorities:
- Monitor the health and safety of STIS. Carry out the necessary periodic monitoring of STIS to ensure that it is operating correctly. Revise operations as necessary to ensure that it will maintain its scientific performance over its lifetime.
- Update and Maintain Pipeline Reference files. This includes things such as darks, biases, flats, and sensitivities. Information on newly released files is announced via the Reference Files Update mailing list (stis_reffiles_upd), the Space Telescope Analysis Newsletters (STANs), and is posted to the STIS webpages. To subscribe to the stis_reffiles_upd mailing list, send an email to listserv@stsci.edu with a blank subject line and “subscribe stis_reffiles_upd” in the body of the email. As new reference files are incorporated into the pipeline, the “recommended reference files” are updated as appropriate for each dataset in the HST Archive.
- Basic sensitivity calibration of spectroscopic modes. The majority of STIS science observations use the spectroscopic modes. Sensitivity calibration is important for instrument safety, science optimization, and data analysis. The sensitivity calibration includes basic measurements of on-orbit throughput, and monitoring of time variations either due to contamination or due to gain variations in the detectors.
- Characterization of optical performance. This includes point spread functions (PSFs), line spread functions, aperture throughputs, enclosed energy for different spectral extraction heights, and imaging and spectroscopic geometric distortion calibrations. Detailed characterization of scattering (e.g., in wavelength in the gratings, or in the far wings of the imaging PSF) is included, but is orbit-intensive and therefore will be carried out over a longer time scale.
- Characterization of detector and observation specific peculiarities. This includes detector nonlinearities, charge transfer effects, fringing, long-wavelength scattering within the CCD, grating scatter and extended PSF wings, etc.
- Calibration and testing of future observing mode strategies. The original goals to test cross-dispersed gratings and other operating modes were scaled back through the course of Cycle 7 due to the press of the higher priority calibrations.
Within each of these priority groups, calibration priority is in the following order by observing mode:
- First order prime L grating modes (
G140L
,G230L
,G430L
,G750L
). - Echelle spectroscopy.
- First- order M-mode gratings.
- CCD imaging (broad band first, then narrow band).
- MAMA imaging (broad band first, then narrow band).
G230LB
andG230MB
backup modes, including analysis of scattered red light.
In addition, on-axis calibrations have higher priority than off-axis calibrations. That is, we sought first to establish the calibrations at the field/slit center and thereafter, to expand the calibration to two dimensions.
17.4.2 Calibration Status
The overall status of STIS calibration was summarized in the STScI Newsletter in October 1998 and in the Cycle 7 Calibration Close-out Report (STIS ISR 2000-04). Many reference files were updated with new calibrations from on-orbit data. The HISTORY
and PEDIGREE
fields of the calibration reference files should be consulted if you are in doubt about the origin of the calibration. HISTORY
keywords contain commentary on the file’s creation. The PEDIGREE
keyword describes the type of data (GROUND
, INFLIGHT
) and gives the date range over which the calibration data were taken.
-
STIS Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction
-
Chapter 2: Special Considerations for Cycle 32
- • 2.1 STIS Repair and Return to Operations
- • 2.2 Summary of STIS Performance Changes Since 2004
- • 2.3 New Capabilities for Cycle 32
- • 2.4 Use of Available-but-Unsupported Capabilities
- • 2.5 Choosing Between COS and STIS
- • 2.6 Scheduling Efficiency and Visit Orbit Limits
- • 2.7 MAMA Scheduling Policies
- • 2.8 Prime and Parallel Observing: MAMA Bright-Object Constraints
- • 2.9 STIS Snapshot Program Policies
- Chapter 3: STIS Capabilities, Design, Operations, and Observations
- Chapter 4: Spectroscopy
- Chapter 5: Imaging
- Chapter 6: Exposure Time Calculations
- Chapter 7: Feasibility and Detector Performance
-
Chapter 8: Target Acquisition
- • 8.1 Introduction
- • 8.2 STIS Onboard CCD Target Acquisitions - ACQ
- • 8.3 Onboard Target Acquisition Peakups - ACQ PEAK
- • 8.4 Determining Coordinates in the International Celestial Reference System (ICRS) Reference Frame
- • 8.5 Acquisition Examples
- • 8.6 STIS Post-Observation Target Acquisition Analysis
- Chapter 9: Overheads and Orbit-Time Determination
- Chapter 10: Summary and Checklist
- Chapter 11: Data Taking
-
Chapter 12: Special Uses of STIS
- • 12.1 Slitless First-Order Spectroscopy
- • 12.2 Long-Slit Echelle Spectroscopy
- • 12.3 Time-Resolved Observations
- • 12.4 Observing Too-Bright Objects with STIS
- • 12.5 High Signal-to-Noise Ratio Observations
- • 12.6 Improving the Sampling of the Line Spread Function
- • 12.7 Considerations for Observing Planetary Targets
- • 12.8 Special Considerations for Extended Targets
- • 12.9 Parallel Observing with STIS
- • 12.10 Coronagraphic Spectroscopy
- • 12.11 Coronagraphic Imaging - 50CORON
- • 12.12 Spatial Scans with the STIS CCD
-
Chapter 13: Spectroscopic Reference Material
- • 13.1 Introduction
- • 13.2 Using the Information in this Chapter
-
13.3 Gratings
- • First-Order Grating G750L
- • First-Order Grating G750M
- • First-Order Grating G430L
- • First-Order Grating G430M
- • First-Order Grating G230LB
- • Comparison of G230LB and G230L
- • First-Order Grating G230MB
- • Comparison of G230MB and G230M
- • First-Order Grating G230L
- • First-Order Grating G230M
- • First-Order Grating G140L
- • First-Order Grating G140M
- • Echelle Grating E230M
- • Echelle Grating E230H
- • Echelle Grating E140M
- • Echelle Grating E140H
- • PRISM
- • PRISM Wavelength Relationship
-
13.4 Apertures
- • 52X0.05 Aperture
- • 52X0.05E1 and 52X0.05D1 Pseudo-Apertures
- • 52X0.1 Aperture
- • 52X0.1E1 and 52X0.1D1 Pseudo-Apertures
- • 52X0.2 Aperture
- • 52X0.2E1, 52X0.2E2, and 52X0.2D1 Pseudo-Apertures
- • 52X0.5 Aperture
- • 52X0.5E1, 52X0.5E2, and 52X0.5D1 Pseudo-Apertures
- • 52X2 Aperture
- • 52X2E1, 52X2E2, and 52X2D1 Pseudo-Apertures
- • 52X0.2F1 Aperture
- • 0.2X0.06 Aperture
- • 0.2X0.2 Aperture
- • 0.2X0.09 Aperture
- • 6X0.2 Aperture
- • 0.1X0.03 Aperture
- • FP-SPLIT Slits 0.2X0.06FP(A-E) Apertures
- • FP-SPLIT Slits 0.2X0.2FP(A-E) Apertures
- • 31X0.05ND(A-C) Apertures
- • 0.2X0.05ND Aperture
- • 0.3X0.05ND Aperture
- • F25NDQ Aperture
- 13.5 Spatial Profiles
- 13.6 Line Spread Functions
- • 13.7 Spectral Purity, Order Confusion, and Peculiarities
- • 13.8 MAMA Spectroscopic Bright Object Limits
-
Chapter 14: Imaging Reference Material
- • 14.1 Introduction
- • 14.2 Using the Information in this Chapter
- 14.3 CCD
- 14.4 NUV-MAMA
-
14.5 FUV-MAMA
- • 25MAMA - FUV-MAMA, Clear
- • 25MAMAD1 - FUV-MAMA Pseudo-Aperture
- • F25ND3 - FUV-MAMA
- • F25ND5 - FUV-MAMA
- • F25NDQ - FUV-MAMA
- • F25QTZ - FUV-MAMA, Longpass
- • F25QTZD1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25SRF2 - FUV-MAMA, Longpass
- • F25SRF2D1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25LYA - FUV-MAMA, Lyman-alpha
- • 14.6 Image Mode Geometric Distortion
- • 14.7 Spatial Dependence of the STIS PSF
- • 14.8 MAMA Imaging Bright Object Limits
- Chapter 15: Overview of Pipeline Calibration
- Chapter 16: Accuracies
-
Chapter 17: Calibration Status and Plans
- • 17.1 Introduction
- • 17.2 Ground Testing and Calibration
- • 17.3 STIS Installation and Verification (SMOV2)
- • 17.4 Cycle 7 Calibration
- • 17.5 Cycle 8 Calibration
- • 17.6 Cycle 9 Calibration
- • 17.7 Cycle 10 Calibration
- • 17.8 Cycle 11 Calibration
- • 17.9 Cycle 12 Calibration
- • 17.10 SM4 and SMOV4 Calibration
- • 17.11 Cycle 17 Calibration Plan
- • 17.12 Cycle 18 Calibration Plan
- • 17.13 Cycle 19 Calibration Plan
- • 17.14 Cycle 20 Calibration Plan
- • 17.15 Cycle 21 Calibration Plan
- • 17.16 Cycle 22 Calibration Plan
- • 17.17 Cycle 23 Calibration Plan
- • 17.18 Cycle 24 Calibration Plan
- • 17.19 Cycle 25 Calibration Plan
- • 17.20 Cycle 26 Calibration Plan
- • 17.21 Cycle 27 Calibration Plan
- • 17.22 Cycle 28 Calibration Plan
- • 17.23 Cycle 29 Calibration Plan
- • 17.24 Cycle 30 Calibration Plan
- • 17.25 Cycle 31 Calibration Plan
- Appendix A: Available-But-Unsupported Spectroscopic Capabilities
- • Glossary