14.6 Image Mode Geometric Distortion
The STIS cameras have significant geometric distortion that not only affects astrometry, but also in principle affects photometry (because the extended sources used to generate flat fields have an induced change in the apparent surface brightness). For the CCD the image distortions are less than one pixel across the whole detector, and can often be ignored. For the MAMA the distortions are larger, approaching 3 pixels at the corners of cameras.
Geometric distortion and plate scales for the STIS imaging configurations have been measured on-orbit by observing star fields shifted to different positions in the field, following a procedure similar to that used for WFPC-2 (Holtzman et al., 1995, PASP, 107, 156). The geometric distortion data also allowed a determination of the mean plate scale at the center of the field for each detector. These plate scales, for unfiltered CCD exposures and filtered MAMA exposures (see ISR STIS 2001-02), are given in Table 14.38. The quoted errors are formal random errors derived from the uncertainties in measuring the positions of the sources. The STIS team has determined that the plate scale for unfiltered FUV-MAMA
images (25MAMA) is 1.0031 times larger than for filtered images (F25QTZ and F25SRF2); the plate scale for unfiltered NUV-MAMA
images (25MAMA) is 1.0008 times smaller than for filtered images (F25QTZ and F25CN182).
Table 14.38: Mean pixel scales for STIS detectors.
Detector | X scale | X error | Y scale | Y error | Corrected |
| 0.050716 | 0.000072 | 0.050735 | 0.000087 | 0.050725 |
| 0.024328 | 0.000025 | 0.024608 | 0.000086 | 0.024468 |
| 0.024526 | 0.000120 | 0.024829 | 0.000126 | 0.024677 |
Distortion solutions have been implemented in the IDCTAB reference files (see ACS ISR 2001-08). The equations which relate the true xi, yi positions of the stars with the observed positions x, y are as follows (STIS ISR 2004-01):
x_i - x_r = \sum^k_{i=0} \sum^i_{j=0}c_{x,i,j}(x-x_r)^j (y-y_r)^{i-j} |
y_i - y_r = \sum^k_{i=0} \sum^i_{j=0}c_{y,i,j}(x-x_r)^j (y-y_r)^{i-j} |
where xr and yr are the coordinates of the central pixel.
Maíz-Apellániz & L. Úbeda discovered that the coefficients for the NUV-MAMA
had been incorrectly implemented in the original IDCTAB reference file and performed a revised analysis (ISR STIS 2004-01). A similar re-analysis for the FUV-MAMA
has recently been performed by Sohn (STIS ISR 2018-02). Both analyses employ a fourth-order transformation between raw and rectified coordinates, using the mean plate scales given in Table 14.38. The plate scales imposed on rectified images produced by calstis using the latest IDCTABs (column "SCALE") are given in Table 14.39.
Table 14.39: Plate scales of rectified and drizzled images.
Detector | IDCTAB | Plate Scale (arcsec/pixel) | |
Clear | Filtered | ||
| o8g1508do_idc | 0.05072 | 0.05075 |
| 1771408ro_idc | 0.024395 | 0.024468 |
| o8g1508fo_idc | 0.024604 | 0.024678 |
-
STIS Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction
-
Chapter 2: Special Considerations for Cycle 32
- • 2.1 STIS Repair and Return to Operations
- • 2.2 Summary of STIS Performance Changes Since 2004
- • 2.3 New Capabilities for Cycle 32
- • 2.4 Use of Available-but-Unsupported Capabilities
- • 2.5 Choosing Between COS and STIS
- • 2.6 Scheduling Efficiency and Visit Orbit Limits
- • 2.7 MAMA Scheduling Policies
- • 2.8 Prime and Parallel Observing: MAMA Bright-Object Constraints
- • 2.9 STIS Snapshot Program Policies
- Chapter 3: STIS Capabilities, Design, Operations, and Observations
- Chapter 4: Spectroscopy
- Chapter 5: Imaging
- Chapter 6: Exposure Time Calculations
- Chapter 7: Feasibility and Detector Performance
-
Chapter 8: Target Acquisition
- • 8.1 Introduction
- • 8.2 STIS Onboard CCD Target Acquisitions - ACQ
- • 8.3 Onboard Target Acquisition Peakups - ACQ PEAK
- • 8.4 Determining Coordinates in the International Celestial Reference System (ICRS) Reference Frame
- • 8.5 Acquisition Examples
- • 8.6 STIS Post-Observation Target Acquisition Analysis
- Chapter 9: Overheads and Orbit-Time Determination
- Chapter 10: Summary and Checklist
- Chapter 11: Data Taking
-
Chapter 12: Special Uses of STIS
- • 12.1 Slitless First-Order Spectroscopy
- • 12.2 Long-Slit Echelle Spectroscopy
- • 12.3 Time-Resolved Observations
- • 12.4 Observing Too-Bright Objects with STIS
- • 12.5 High Signal-to-Noise Ratio Observations
- • 12.6 Improving the Sampling of the Line Spread Function
- • 12.7 Considerations for Observing Planetary Targets
- • 12.8 Special Considerations for Extended Targets
- • 12.9 Parallel Observing with STIS
- • 12.10 Coronagraphic Spectroscopy
- • 12.11 Coronagraphic Imaging - 50CORON
- • 12.12 Spatial Scans with the STIS CCD
-
Chapter 13: Spectroscopic Reference Material
- • 13.1 Introduction
- • 13.2 Using the Information in this Chapter
-
13.3 Gratings
- • First-Order Grating G750L
- • First-Order Grating G750M
- • First-Order Grating G430L
- • First-Order Grating G430M
- • First-Order Grating G230LB
- • Comparison of G230LB and G230L
- • First-Order Grating G230MB
- • Comparison of G230MB and G230M
- • First-Order Grating G230L
- • First-Order Grating G230M
- • First-Order Grating G140L
- • First-Order Grating G140M
- • Echelle Grating E230M
- • Echelle Grating E230H
- • Echelle Grating E140M
- • Echelle Grating E140H
- • PRISM
- • PRISM Wavelength Relationship
-
13.4 Apertures
- • 52X0.05 Aperture
- • 52X0.05E1 and 52X0.05D1 Pseudo-Apertures
- • 52X0.1 Aperture
- • 52X0.1E1 and 52X0.1D1 Pseudo-Apertures
- • 52X0.2 Aperture
- • 52X0.2E1, 52X0.2E2, and 52X0.2D1 Pseudo-Apertures
- • 52X0.5 Aperture
- • 52X0.5E1, 52X0.5E2, and 52X0.5D1 Pseudo-Apertures
- • 52X2 Aperture
- • 52X2E1, 52X2E2, and 52X2D1 Pseudo-Apertures
- • 52X0.2F1 Aperture
- • 0.2X0.06 Aperture
- • 0.2X0.2 Aperture
- • 0.2X0.09 Aperture
- • 6X0.2 Aperture
- • 0.1X0.03 Aperture
- • FP-SPLIT Slits 0.2X0.06FP(A-E) Apertures
- • FP-SPLIT Slits 0.2X0.2FP(A-E) Apertures
- • 31X0.05ND(A-C) Apertures
- • 0.2X0.05ND Aperture
- • 0.3X0.05ND Aperture
- • F25NDQ Aperture
- 13.5 Spatial Profiles
- 13.6 Line Spread Functions
- • 13.7 Spectral Purity, Order Confusion, and Peculiarities
- • 13.8 MAMA Spectroscopic Bright Object Limits
-
Chapter 14: Imaging Reference Material
- • 14.1 Introduction
- • 14.2 Using the Information in this Chapter
- 14.3 CCD
- 14.4 NUV-MAMA
-
14.5 FUV-MAMA
- • 25MAMA - FUV-MAMA, Clear
- • 25MAMAD1 - FUV-MAMA Pseudo-Aperture
- • F25ND3 - FUV-MAMA
- • F25ND5 - FUV-MAMA
- • F25NDQ - FUV-MAMA
- • F25QTZ - FUV-MAMA, Longpass
- • F25QTZD1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25SRF2 - FUV-MAMA, Longpass
- • F25SRF2D1 - FUV-MAMA, Longpass Pseudo-Aperture
- • F25LYA - FUV-MAMA, Lyman-alpha
- • 14.6 Image Mode Geometric Distortion
- • 14.7 Spatial Dependence of the STIS PSF
- • 14.8 MAMA Imaging Bright Object Limits
- Chapter 15: Overview of Pipeline Calibration
- Chapter 16: Accuracies
-
Chapter 17: Calibration Status and Plans
- • 17.1 Introduction
- • 17.2 Ground Testing and Calibration
- • 17.3 STIS Installation and Verification (SMOV2)
- • 17.4 Cycle 7 Calibration
- • 17.5 Cycle 8 Calibration
- • 17.6 Cycle 9 Calibration
- • 17.7 Cycle 10 Calibration
- • 17.8 Cycle 11 Calibration
- • 17.9 Cycle 12 Calibration
- • 17.10 SM4 and SMOV4 Calibration
- • 17.11 Cycle 17 Calibration Plan
- • 17.12 Cycle 18 Calibration Plan
- • 17.13 Cycle 19 Calibration Plan
- • 17.14 Cycle 20 Calibration Plan
- • 17.15 Cycle 21 Calibration Plan
- • 17.16 Cycle 22 Calibration Plan
- • 17.17 Cycle 23 Calibration Plan
- • 17.18 Cycle 24 Calibration Plan
- • 17.19 Cycle 25 Calibration Plan
- • 17.20 Cycle 26 Calibration Plan
- • 17.21 Cycle 27 Calibration Plan
- • 17.22 Cycle 28 Calibration Plan
- • 17.23 Cycle 29 Calibration Plan
- • 17.24 Cycle 30 Calibration Plan
- • 17.25 Cycle 31 Calibration Plan
- Appendix A: Available-But-Unsupported Spectroscopic Capabilities
- • Glossary