C.1 Why Mosaicking and Dithering are Needed
The sizes of telescope pointing offsets between successive exposures can be very different, depending on whether the purpose is “mosaicking” or “dithering.” Mosaicking is done with the aim of increasing the area of sky covered by a particular set of exposures, usually with the goal of providing a seamless joining of contiguous frames. The angular offsets used when mosaicking are generally large, up to the size of the field of view. Only programs observing targets larger than the field of view of the detector need to use mosaicked exposures.
Dithering generally involves much smaller telescope offsets, often on the order of a few pixels in size. Most imaging programs are advised to use dithering for several reasons, including:
- removal of hot pixels and other detector blemishes (Section 6.10.2)
- improving sampling of the PSF (Sections 6.11.1 and 7.10.1)
- improving photometric accuracy by averaging over flat-fielding errors (Sections 5.4.3, 5.7.4, and 6.11.1)
- bridging over the gap between the chips in the UVIS channel (Section 5.2.2).
Dithered and mosaicked exposures can be combined using software included in DrizzlePac. Several documents provide examples of how to use this software, including the ReadTheDocs software documentation and the DrizzlePac Handbook.
WFC3 ISR 2015-04 describes a methodology for optimizing the parameter pixfrac
and shows the results of tests conducted for the Frontier Fields program. WFC3 ISR 2015-09 shows how mosaic alignment can be achieved in a single step in DrizzlePac 2.0 by building up an expanded reference catalog, and uses the WFC3 observations of the Eagle Nebula (M16) as an example.
Instead of using DrizzlePac, WFC3 ISR 2014-23 describes the procedure by which the individual images in the Frontier Fields program were aligned using galaxies and provides the FORTRAN source code hst2galign
that accomplishes the alignment. Further uses of hst2galign
involving PSF-fitting and faint source location and photometry are discussed in WFC3 ISR 2014-24.
Note that it is sometimes necessary to use software like that in DrizzlePac to combine even CR-SPLIT or repeat exposures, when pointing drift causes slight misalignment of exposures and differences in how PSFs are pixelated, or when gradual changes in focus over the course of an orbit produce changes in the observed PSF.
In some programs, especially those observing time-variable phenomena, combining dithered exposures to correct for cosmic rays and transient bad pixels may be scientifically infeasible. In such cases, single-image based methods must be used. These methods use statistical properties of cosmic-ray brightness or sharpness to identify and interpolate across cosmic rays. Single-image cosmic ray rejection schemes are not available through the standard WFC3 calibration pipeline.
-
WFC3 Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction to WFC3
- Chapter 2: WFC3 Instrument Description
- Chapter 3: Choosing the Optimum HST Instrument
- Chapter 4: Designing a Phase I WFC3 Proposal
- Chapter 5: WFC3 Detector Characteristics and Performance
-
Chapter 6: UVIS Imaging with WFC3
- • 6.1 WFC3 UVIS Imaging
- • 6.2 Specifying a UVIS Observation
- • 6.3 UVIS Channel Characteristics
- • 6.4 UVIS Field Geometry
- • 6.5 UVIS Spectral Elements
- • 6.6 UVIS Optical Performance
- • 6.7 UVIS Exposure and Readout
- • 6.8 UVIS Sensitivity
- • 6.9 Charge Transfer Efficiency
- • 6.10 Other Considerations for UVIS Imaging
- • 6.11 UVIS Observing Strategies
- Chapter 7: IR Imaging with WFC3
- Chapter 8: Slitless Spectroscopy with WFC3
-
Chapter 9: WFC3 Exposure-Time Calculation
- • 9.1 Overview
- • 9.2 The WFC3 Exposure Time Calculator - ETC
- • 9.3 Calculating Sensitivities from Tabulated Data
- • 9.4 Count Rates: Imaging
- • 9.5 Count Rates: Slitless Spectroscopy
- • 9.6 Estimating Exposure Times
- • 9.7 Sky Background
- • 9.8 Interstellar Extinction
- • 9.9 Exposure-Time Calculation Examples
- Chapter 10: Overheads and Orbit Time Determinations
-
Appendix A: WFC3 Filter Throughputs
- • A.1 Introduction
-
A.2 Throughputs and Signal-to-Noise Ratio Data
- • UVIS F200LP
- • UVIS F218W
- • UVIS F225W
- • UVIS F275W
- • UVIS F280N
- • UVIS F300X
- • UVIS F336W
- • UVIS F343N
- • UVIS F350LP
- • UVIS F373N
- • UVIS F390M
- • UVIS F390W
- • UVIS F395N
- • UVIS F410M
- • UVIS F438W
- • UVIS F467M
- • UVIS F469N
- • UVIS F475W
- • UVIS F475X
- • UVIS F487N
- • UVIS F502N
- • UVIS F547M
- • UVIS F555W
- • UVIS F600LP
- • UVIS F606W
- • UVIS F621M
- • UVIS F625W
- • UVIS F631N
- • UVIS F645N
- • UVIS F656N
- • UVIS F657N
- • UVIS F658N
- • UVIS F665N
- • UVIS F673N
- • UVIS F680N
- • UVIS F689M
- • UVIS F763M
- • UVIS F775W
- • UVIS F814W
- • UVIS F845M
- • UVIS F850LP
- • UVIS F953N
- • UVIS FQ232N
- • UVIS FQ243N
- • UVIS FQ378N
- • UVIS FQ387N
- • UVIS FQ422M
- • UVIS FQ436N
- • UVIS FQ437N
- • UVIS FQ492N
- • UVIS FQ508N
- • UVIS FQ575N
- • UVIS FQ619N
- • UVIS FQ634N
- • UVIS FQ672N
- • UVIS FQ674N
- • UVIS FQ727N
- • UVIS FQ750N
- • UVIS FQ889N
- • UVIS FQ906N
- • UVIS FQ924N
- • UVIS FQ937N
- • IR F098M
- • IR F105W
- • IR F110W
- • IR F125W
- • IR F126N
- • IR F127M
- • IR F128N
- • IR F130N
- • IR F132N
- • IR F139M
- • IR F140W
- • IR F153M
- • IR F160W
- • IR F164N
- • IR F167N
- Appendix B: Geometric Distortion
- Appendix C: Dithering and Mosaicking
- Appendix D: Bright-Object Constraints and Image Persistence
-
Appendix E: Reduction and Calibration of WFC3 Data
- • E.1 Overview
- • E.2 The STScI Reduction and Calibration Pipeline
- • E.3 The SMOV Calibration Plan
- • E.4 The Cycle 17 Calibration Plan
- • E.5 The Cycle 18 Calibration Plan
- • E.6 The Cycle 19 Calibration Plan
- • E.7 The Cycle 20 Calibration Plan
- • E.8 The Cycle 21 Calibration Plan
- • E.9 The Cycle 22 Calibration Plan
- • E.10 The Cycle 23 Calibration Plan
- • E.11 The Cycle 24 Calibration Plan
- • E.12 The Cycle 25 Calibration Plan
- • E.13 The Cycle 26 Calibration Plan
- • E.14 The Cycle 27 Calibration Plan
- • E.15 The Cycle 28 Calibration Plan
- • E.16 The Cycle 29 Calibration Plan
- • E.17 The Cycle 30 Calibration Plan
- • E.18 The Cycle 31 Calibration Plan
- • Glossary