9.4 Count Rates: Imaging
9.4.1 Point Source
For a point source, the count rate, C (e− s−1), can be expressed as the following integral over the bandpass of the filter:
C = A \int{ F_{\lambda}\frac{\lambda}{hc} Q_{\lambda} T_{\lambda} \epsilon_{f} d \lambda } = \int{F_{\lambda} S \lambda \epsilon_{f} dh } |
where
- A is the area of an unobstructed 2.4-m telescope (i.e., 45,239 cm2).
- Fλ is the flux from the astronomical source in erg cm−2 s−1 Å−1.
- The factor λ/hc (where h is Planck’s constant and c is the speed of light) converts ergs to photons.
- QλTλ is the system fractional throughput, i.e., the probability of detecting an electron per incident photon, including losses due to obstructions of the full 2.4-m OTA aperture. It is specified this way to separate out the instrument sensitivity Qλ and the filter transmission Tλ.
- εf is the fraction of the point-source energy encircled within Npix pixels.
- Sλ is the total imaging point-source sensitivity in units of e− s−1 Å−1
per incident erg cm−2 s−1 Å−1.
The peak e− s−1 pixel−1 from the point source, Cpeak, is given by the following integral over the bandpass:
C_{peak} = \int {F_{\lambda} S_{\lambda} \epsilon_{f} (1) d \lambda } |
where
- Fλ, and Sλ are as above.
- εf(1) is the fraction of energy contained within the peak pixel.
If the flux from the source can be approximated by a flat continuum (Fλ = constant) and εf is roughly constant over the bandpass, then:
C = F_{\lambda} \epsilon_{f} \int{ S_{\lambda} d \lambda} |
We can now define an equivalent bandpass of the filter, Bλ, such that
\int{ S_{\lambda} d \lambda = S_{peak} B_{\lambda} } |
where
- Speak is the peak sensitivity.
- Bλ is the effective bandpass of the filter.
The count rate from the source can now be written as:
C = F_{\lambda} \epsilon_{f} S_{peak} B_{\lambda} |
In Tables 9.1 and 9.2 above, we give the value of
\int{S_{\lambda} d \lambda } |
for each of the filters.
Alternatively, we can write the count-rate equation in terms of V magnitudes:
C = 2.5 \times 10^{11} \epsilon_{f} \bigg( \int{Q T d \lambda / \lambda } \bigg) \times 10^{-0.4(V+AB_{\nu})} |
where V is the visual magnitude of the source, the quantity under the integral is the mean sensitivity of the detector+filter combination (also tabulated in Tables 9.1 and 9.2), and ΑΒν is the filter-dependent correction for the deviation of the source spectrum from a constant Fν spectrum. This latter quantity is tabulated for some representative astronomical spectra in Appendix A.
9.4.2 Diffuse Sources
For a diffuse source, the count rate, C (e− s−1 pixel−1), which is now per pixel, due to the astronomical source can be expressed as
C = \int{I_{\lambda} S_{\lambda} m_{x} m_{y} d \lambda } |
where
- Iλ is the surface brightness of the astronomical source, in erg cm−2 s−1 Å−1 arcsec−2.
- Sλ is as above.
- mx and my are the plate scales in arcsec pixel−1 along orthogonal axes.
9.4.3 Emission-Line Sources
For a source where the flux is dominated by a single emission line, the count rate can be calculated from
C = 2.28 \times 10^{12} \times (QT)_{\lambda} \times F(\lambda) \times \lambda |
where C is the observed count rate in e− s−1, (QT)λ is the system throughput at the wavelength of the emission line, F(λ) is the emission-line flux in units of erg cm−2 s−1, and λ is the wavelength of the emission line in angstroms. (QT)λ can be determined by inspection of the plots in Appendix A. See Section 9.9.4 for an example of count-rate estimation for an emission-line source.
-
WFC3 Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction to WFC3
- Chapter 2: WFC3 Instrument Description
- Chapter 3: Choosing the Optimum HST Instrument
- Chapter 4: Designing a Phase I WFC3 Proposal
- Chapter 5: WFC3 Detector Characteristics and Performance
-
Chapter 6: UVIS Imaging with WFC3
- • 6.1 WFC3 UVIS Imaging
- • 6.2 Specifying a UVIS Observation
- • 6.3 UVIS Channel Characteristics
- • 6.4 UVIS Field Geometry
- • 6.5 UVIS Spectral Elements
- • 6.6 UVIS Optical Performance
- • 6.7 UVIS Exposure and Readout
- • 6.8 UVIS Sensitivity
- • 6.9 Charge Transfer Efficiency
- • 6.10 Other Considerations for UVIS Imaging
- • 6.11 UVIS Observing Strategies
- Chapter 7: IR Imaging with WFC3
- Chapter 8: Slitless Spectroscopy with WFC3
-
Chapter 9: WFC3 Exposure-Time Calculation
- • 9.1 Overview
- • 9.2 The WFC3 Exposure Time Calculator - ETC
- • 9.3 Calculating Sensitivities from Tabulated Data
- • 9.4 Count Rates: Imaging
- • 9.5 Count Rates: Slitless Spectroscopy
- • 9.6 Estimating Exposure Times
- • 9.7 Sky Background
- • 9.8 Interstellar Extinction
- • 9.9 Exposure-Time Calculation Examples
- Chapter 10: Overheads and Orbit Time Determinations
-
Appendix A: WFC3 Filter Throughputs
- • A.1 Introduction
-
A.2 Throughputs and Signal-to-Noise Ratio Data
- • UVIS F200LP
- • UVIS F218W
- • UVIS F225W
- • UVIS F275W
- • UVIS F280N
- • UVIS F300X
- • UVIS F336W
- • UVIS F343N
- • UVIS F350LP
- • UVIS F373N
- • UVIS F390M
- • UVIS F390W
- • UVIS F395N
- • UVIS F410M
- • UVIS F438W
- • UVIS F467M
- • UVIS F469N
- • UVIS F475W
- • UVIS F475X
- • UVIS F487N
- • UVIS F502N
- • UVIS F547M
- • UVIS F555W
- • UVIS F600LP
- • UVIS F606W
- • UVIS F621M
- • UVIS F625W
- • UVIS F631N
- • UVIS F645N
- • UVIS F656N
- • UVIS F657N
- • UVIS F658N
- • UVIS F665N
- • UVIS F673N
- • UVIS F680N
- • UVIS F689M
- • UVIS F763M
- • UVIS F775W
- • UVIS F814W
- • UVIS F845M
- • UVIS F850LP
- • UVIS F953N
- • UVIS FQ232N
- • UVIS FQ243N
- • UVIS FQ378N
- • UVIS FQ387N
- • UVIS FQ422M
- • UVIS FQ436N
- • UVIS FQ437N
- • UVIS FQ492N
- • UVIS FQ508N
- • UVIS FQ575N
- • UVIS FQ619N
- • UVIS FQ634N
- • UVIS FQ672N
- • UVIS FQ674N
- • UVIS FQ727N
- • UVIS FQ750N
- • UVIS FQ889N
- • UVIS FQ906N
- • UVIS FQ924N
- • UVIS FQ937N
- • IR F098M
- • IR F105W
- • IR F110W
- • IR F125W
- • IR F126N
- • IR F127M
- • IR F128N
- • IR F130N
- • IR F132N
- • IR F139M
- • IR F140W
- • IR F153M
- • IR F160W
- • IR F164N
- • IR F167N
- Appendix B: Geometric Distortion
- Appendix C: Dithering and Mosaicking
- Appendix D: Bright-Object Constraints and Image Persistence
-
Appendix E: Reduction and Calibration of WFC3 Data
- • E.1 Overview
- • E.2 The STScI Reduction and Calibration Pipeline
- • E.3 The SMOV Calibration Plan
- • E.4 The Cycle 17 Calibration Plan
- • E.5 The Cycle 18 Calibration Plan
- • E.6 The Cycle 19 Calibration Plan
- • E.7 The Cycle 20 Calibration Plan
- • E.8 The Cycle 21 Calibration Plan
- • E.9 The Cycle 22 Calibration Plan
- • E.10 The Cycle 23 Calibration Plan
- • E.11 The Cycle 24 Calibration Plan
- • E.12 The Cycle 25 Calibration Plan
- • E.13 The Cycle 26 Calibration Plan
- • E.14 The Cycle 27 Calibration Plan
- • E.15 The Cycle 28 Calibration Plan
- • E.16 The Cycle 29 Calibration Plan
- • E.17 The Cycle 30 Calibration Plan
- • E.18 The Cycle 31 Calibration Plan
- • E.19 The Cycle 32 Calibration Plan
- • Glossary