9.6 Estimating Exposure Times
9.6.1 SNR Reached in a Given Exposure Time
To derive the exposure time to achieve a given SNR ratio, or to derive the SNR ratio achieved in a given exposure time, there are four principal ingredients:
- Expected count rate C (e– s−1) from your source over some area.
- The area (in pixels) over which those e– are received (Npix).
- Sky background (Bsky) in e– s−1 pixel−1.
- The detector background, or dark, (Bdet) in e– s−1 pixel−1 and the read noise (R) in e–. (Section 9.7 provides information for determining the sky-plus-detector background.)
The SNR ratio Σ achieved in exposure time t seconds, is given by
\Sigma = \frac{C t} {\sqrt{C t + N_{pix} \big( B_{sky} + B_{det} \big) t + N_{pix} N_{read} P + \frac{N_{pix}}{N_{bin}} N_{read} R^2}} |
where:
- C = the signal from the astronomical source in e− s−1. (Note that the raw output image uses DN, which will be equal to C/G, where G is the gain.)
- Npix = the total number of detector pixels integrated over to achieve C.
- Nbin = the number of detector pixels binned to one read-out pixel when on-chip binning is used.
- Bsky = the sky background in e− s−1 pixel−1.
- Bdet = the detector dark current in e− s−1 pixel−1.
R = the read noise in electrons; 3.1 e− for the UVIS channel and 12. e− for the IR channel (this is the effective read noise achieved by fitting the ramp of IR readouts, if close to the full sequence of 16 readouts is used).
Nread = the number of detector readouts.
P = the background added using the post-flash option (Section 6.9.2) in e− pixel-1
The above equation assumes the optimistic (but often realistic) condition that the background zero-point level under the object that is subtracted could be well known (from integrating over many pixels) but is still noisy in Npix and does not significantly contribute to the error budget; in crowded fields this may not be true. In general, C in the numerator should be the signal in Npix from the component to be measured (e.g., the point source in an image or the line emission in a spectrum), while C in the denominator is the total astronomical signal in Npix (e.g., including light from the underlying galaxy in the image or from the continuum in the spectrum).
9.6.2 Exposure Time to Reach a Given SNR
Observers normally take sufficiently long integrations that the read noise is not important. This condition is met when:
C t + N_{pix} \big( B_{sky} + B_{det} \big) t + N_{pix} N_{read} P > 2 \frac{N_{pix}}{N_{bin}} N_{read} R^2 |
In the regime where read noise is unimportant, and virtually all of the astronomical signal in Npix comes from the component being measured, the integration time to reach a given signal-to-noise ratio Σ is:
t = \frac{\Sigma^2 \big[ C + N_{pix} \big( B_{sky} + B_{det} \big) + N_{pix} N_{read} P \big] }{C^2} |
If the source count rate is much higher than that of the sky plus detector backgrounds, then this expression reduces further to:
t = \frac{\Sigma^2}{C} |
i.e., the usual result for Poisson statistics of \small{\Sigma=\sqrt{\mathrm{total\ counts}}}.
More generally, the required integration time to reach a given SNR ratio is:
t = \frac{\Sigma^2 [C + N_{pix} ( B_{sky} + B_{det} ) ] + \sqrt{\Sigma^4 [ C + N_{pix} ( B_{sky} + B_{det} ) ]^2 + 4 \Sigma^2 C^2 \Bigl[ N_{pix} N_{read} P + \frac{N_{pix}}{N_{bin}} N_{read} R^2 \Bigr] }}{2C^2} |
9.6.3 Exposure Time Estimates for Red Targets in F850LP
At long wavelengths, ACS CCD observations are affected by a red halo due to light scattered off the CCD substrate; i.e. an increasing fraction of the light as a function of wavelength is scattered from the center of the PSF into the wings. This problem affects particularly the very broad z-band F850LP filter in ACS, for which the encircled energy depends on the underlying spectral energy distribution the most. This problem has not been seen in WFC3/UVIS observations, and so should not be a concern for those planning WFC3 observations.
-
WFC3 Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction to WFC3
- Chapter 2: WFC3 Instrument Description
- Chapter 3: Choosing the Optimum HST Instrument
- Chapter 4: Designing a Phase I WFC3 Proposal
- Chapter 5: WFC3 Detector Characteristics and Performance
-
Chapter 6: UVIS Imaging with WFC3
- • 6.1 WFC3 UVIS Imaging
- • 6.2 Specifying a UVIS Observation
- • 6.3 UVIS Channel Characteristics
- • 6.4 UVIS Field Geometry
- • 6.5 UVIS Spectral Elements
- • 6.6 UVIS Optical Performance
- • 6.7 UVIS Exposure and Readout
- • 6.8 UVIS Sensitivity
- • 6.9 Charge Transfer Efficiency
- • 6.10 Other Considerations for UVIS Imaging
- • 6.11 UVIS Observing Strategies
- Chapter 7: IR Imaging with WFC3
- Chapter 8: Slitless Spectroscopy with WFC3
-
Chapter 9: WFC3 Exposure-Time Calculation
- • 9.1 Overview
- • 9.2 The WFC3 Exposure Time Calculator - ETC
- • 9.3 Calculating Sensitivities from Tabulated Data
- • 9.4 Count Rates: Imaging
- • 9.5 Count Rates: Slitless Spectroscopy
- • 9.6 Estimating Exposure Times
- • 9.7 Sky Background
- • 9.8 Interstellar Extinction
- • 9.9 Exposure-Time Calculation Examples
- Chapter 10: Overheads and Orbit Time Determinations
-
Appendix A: WFC3 Filter Throughputs
- • A.1 Introduction
-
A.2 Throughputs and Signal-to-Noise Ratio Data
- • UVIS F200LP
- • UVIS F218W
- • UVIS F225W
- • UVIS F275W
- • UVIS F280N
- • UVIS F300X
- • UVIS F336W
- • UVIS F343N
- • UVIS F350LP
- • UVIS F373N
- • UVIS F390M
- • UVIS F390W
- • UVIS F395N
- • UVIS F410M
- • UVIS F438W
- • UVIS F467M
- • UVIS F469N
- • UVIS F475W
- • UVIS F475X
- • UVIS F487N
- • UVIS F502N
- • UVIS F547M
- • UVIS F555W
- • UVIS F600LP
- • UVIS F606W
- • UVIS F621M
- • UVIS F625W
- • UVIS F631N
- • UVIS F645N
- • UVIS F656N
- • UVIS F657N
- • UVIS F658N
- • UVIS F665N
- • UVIS F673N
- • UVIS F680N
- • UVIS F689M
- • UVIS F763M
- • UVIS F775W
- • UVIS F814W
- • UVIS F845M
- • UVIS F850LP
- • UVIS F953N
- • UVIS FQ232N
- • UVIS FQ243N
- • UVIS FQ378N
- • UVIS FQ387N
- • UVIS FQ422M
- • UVIS FQ436N
- • UVIS FQ437N
- • UVIS FQ492N
- • UVIS FQ508N
- • UVIS FQ575N
- • UVIS FQ619N
- • UVIS FQ634N
- • UVIS FQ672N
- • UVIS FQ674N
- • UVIS FQ727N
- • UVIS FQ750N
- • UVIS FQ889N
- • UVIS FQ906N
- • UVIS FQ924N
- • UVIS FQ937N
- • IR F098M
- • IR F105W
- • IR F110W
- • IR F125W
- • IR F126N
- • IR F127M
- • IR F128N
- • IR F130N
- • IR F132N
- • IR F139M
- • IR F140W
- • IR F153M
- • IR F160W
- • IR F164N
- • IR F167N
- Appendix B: Geometric Distortion
- Appendix C: Dithering and Mosaicking
- Appendix D: Bright-Object Constraints and Image Persistence
-
Appendix E: Reduction and Calibration of WFC3 Data
- • E.1 Overview
- • E.2 The STScI Reduction and Calibration Pipeline
- • E.3 The SMOV Calibration Plan
- • E.4 The Cycle 17 Calibration Plan
- • E.5 The Cycle 18 Calibration Plan
- • E.6 The Cycle 19 Calibration Plan
- • E.7 The Cycle 20 Calibration Plan
- • E.8 The Cycle 21 Calibration Plan
- • E.9 The Cycle 22 Calibration Plan
- • E.10 The Cycle 23 Calibration Plan
- • E.11 The Cycle 24 Calibration Plan
- • E.12 The Cycle 25 Calibration Plan
- • E.13 The Cycle 26 Calibration Plan
- • E.14 The Cycle 27 Calibration Plan
- • E.15 The Cycle 28 Calibration Plan
- • E.16 The Cycle 29 Calibration Plan
- • E.17 The Cycle 30 Calibration Plan
- • E.18 The Cycle 31 Calibration Plan
- • Glossary