5.3 WFC3 CCD Readout Formats
5.3.1 Full-frame Readout
The WFC3 UVIS channel contains two CCD chips, each of which has two readout amplifiers. The amplifiers on chip 1 are designated A and B, and those on chip 2 as C and D. Although a chip (or part of a chip) may be read out through a single amplifier, the default and fastest readout mode employs all four amplifiers simultaneously, such that each amplifier reads out half of a chip.
A full-frame UVIS exposure produces a single FITS file in which the data from each of the two chips are stored in separate image extensions, along with associated error and data quality arrays for each image. For consistency with ACS, the image data from CCD chip 2 are stored in SCI array 1 (FITS extension 1) and the image data from CCD chip 1 are stored in SCI array 2 (FITS extension 4). Table 5.2 lists the chips, the associated amplifiers, and the FITS extensions of the science image data.
Each CCD chip contains 2051 × 4096 active pixels, but the raw images returned by the WFC3 electronics contain a larger number of pixels. This is due to the detector overscan: portions of the detector that are not exposed to light. Overscan regions are useful for characterizing detector electronics performance, and especially for measuring the bias level contained within an image. Serial overscan corresponds to a fixed number of unexposed pixels at each end of each serial shift register. Conversely, parallel overscan is generated by additional parallel shifting before or after all of the exposed rows of the detector have been read out. In principal, both serial and parallel overscan can be implemented either as physical overscan or virtual overscan. The physical overscan is a characteristic of the detector hardware, whereas virtual overscan is a software function, and the number of rows and columns of virtual overscan generated for an image is controllable via the readout timing pattern.
The WFC3 CCD overscan regions are described in more detail in Section 6.7, and dimensions for unbinned and binned exposures are specified in Table 6.10.
Table 5.2: WFC3 CCD Naming Conventions.
CCD Chip | Amplifiers | Science Image FITS File Extension | Error Array FITS File Extension | Data Quality Array FITS File Extension |
1 | A, B | [SCI,2]=[4] | [ERR,2]=[5] | [DQ,2]=[6] |
2 | C, D | [SCI,1]=[1] | [ERR,1]=[2] | [DQ,1]=[3] |
5.3.2 Subarrays
The default CCD readout mode is to read all pixels of both chips, including all available overscan regions. It is also possible to restrict the readout to rectangular subarray regions. Only data from the area within the subarray are stored in buffer memory, and the rest of the image is discarded. The subarray can be chosen from several pre-defined configurations.
UVIS subarray images contain no virtual overscan data and serial physical overscan is present only if the defined subarray boundaries overlap the physical overscan columns on either end of the chips. Thus all corner subarrays contain physical overscan data, while centered subarrays do not (Table 6.1).
Subarrays are discussed in greater detail in Section 6.4.4.
5.3.3 On-Chip Binning
The UVIS CCDs also provide an on-chip binning capability, in which several adjacent pixels may be read out as a single pixel. The available choices are 2 × 2 and 3 × 3 on-chip binning. On-chip binning and subarrays can not be used simultaneously. See Section 6.4.4 for details on the use of on-chip binning in WFC3/UVIS observations. If on-chip binning is used, the overscan geometry is complicated by the need to truncate “odd” pixels, and each half of a row must be considered separately. As a result, depending on the binning mode, some science pixels adjacent to the overscan region may be binned together with overscan data. Details are given at the end of Section 6.7.2.
-
WFC3 Instrument Handbook
- • Acknowledgments
- Chapter 1: Introduction to WFC3
- Chapter 2: WFC3 Instrument Description
- Chapter 3: Choosing the Optimum HST Instrument
- Chapter 4: Designing a Phase I WFC3 Proposal
- Chapter 5: WFC3 Detector Characteristics and Performance
-
Chapter 6: UVIS Imaging with WFC3
- • 6.1 WFC3 UVIS Imaging
- • 6.2 Specifying a UVIS Observation
- • 6.3 UVIS Channel Characteristics
- • 6.4 UVIS Field Geometry
- • 6.5 UVIS Spectral Elements
- • 6.6 UVIS Optical Performance
- • 6.7 UVIS Exposure and Readout
- • 6.8 UVIS Sensitivity
- • 6.9 Charge Transfer Efficiency
- • 6.10 Other Considerations for UVIS Imaging
- • 6.11 UVIS Observing Strategies
- Chapter 7: IR Imaging with WFC3
- Chapter 8: Slitless Spectroscopy with WFC3
-
Chapter 9: WFC3 Exposure-Time Calculation
- • 9.1 Overview
- • 9.2 The WFC3 Exposure Time Calculator - ETC
- • 9.3 Calculating Sensitivities from Tabulated Data
- • 9.4 Count Rates: Imaging
- • 9.5 Count Rates: Slitless Spectroscopy
- • 9.6 Estimating Exposure Times
- • 9.7 Sky Background
- • 9.8 Interstellar Extinction
- • 9.9 Exposure-Time Calculation Examples
- Chapter 10: Overheads and Orbit Time Determinations
-
Appendix A: WFC3 Filter Throughputs
- • A.1 Introduction
-
A.2 Throughputs and Signal-to-Noise Ratio Data
- • UVIS F200LP
- • UVIS F218W
- • UVIS F225W
- • UVIS F275W
- • UVIS F280N
- • UVIS F300X
- • UVIS F336W
- • UVIS F343N
- • UVIS F350LP
- • UVIS F373N
- • UVIS F390M
- • UVIS F390W
- • UVIS F395N
- • UVIS F410M
- • UVIS F438W
- • UVIS F467M
- • UVIS F469N
- • UVIS F475W
- • UVIS F475X
- • UVIS F487N
- • UVIS F502N
- • UVIS F547M
- • UVIS F555W
- • UVIS F600LP
- • UVIS F606W
- • UVIS F621M
- • UVIS F625W
- • UVIS F631N
- • UVIS F645N
- • UVIS F656N
- • UVIS F657N
- • UVIS F658N
- • UVIS F665N
- • UVIS F673N
- • UVIS F680N
- • UVIS F689M
- • UVIS F763M
- • UVIS F775W
- • UVIS F814W
- • UVIS F845M
- • UVIS F850LP
- • UVIS F953N
- • UVIS FQ232N
- • UVIS FQ243N
- • UVIS FQ378N
- • UVIS FQ387N
- • UVIS FQ422M
- • UVIS FQ436N
- • UVIS FQ437N
- • UVIS FQ492N
- • UVIS FQ508N
- • UVIS FQ575N
- • UVIS FQ619N
- • UVIS FQ634N
- • UVIS FQ672N
- • UVIS FQ674N
- • UVIS FQ727N
- • UVIS FQ750N
- • UVIS FQ889N
- • UVIS FQ906N
- • UVIS FQ924N
- • UVIS FQ937N
- • IR F098M
- • IR F105W
- • IR F110W
- • IR F125W
- • IR F126N
- • IR F127M
- • IR F128N
- • IR F130N
- • IR F132N
- • IR F139M
- • IR F140W
- • IR F153M
- • IR F160W
- • IR F164N
- • IR F167N
- Appendix B: Geometric Distortion
- Appendix C: Dithering and Mosaicking
- Appendix D: Bright-Object Constraints and Image Persistence
-
Appendix E: Reduction and Calibration of WFC3 Data
- • E.1 Overview
- • E.2 The STScI Reduction and Calibration Pipeline
- • E.3 The SMOV Calibration Plan
- • E.4 The Cycle 17 Calibration Plan
- • E.5 The Cycle 18 Calibration Plan
- • E.6 The Cycle 19 Calibration Plan
- • E.7 The Cycle 20 Calibration Plan
- • E.8 The Cycle 21 Calibration Plan
- • E.9 The Cycle 22 Calibration Plan
- • E.10 The Cycle 23 Calibration Plan
- • E.11 The Cycle 24 Calibration Plan
- • E.12 The Cycle 25 Calibration Plan
- • E.13 The Cycle 26 Calibration Plan
- • E.14 The Cycle 27 Calibration Plan
- • E.15 The Cycle 28 Calibration Plan
- • E.16 The Cycle 29 Calibration Plan
- • E.17 The Cycle 30 Calibration Plan
- • E.18 The Cycle 31 Calibration Plan
- • E.19 The Cycle 32 Calibration Plan
- • Glossary